334 research outputs found

    Synchronization in large directed networks of coupled phase oscillators

    Full text link
    We extend recent theoretical approximations describing the transition to synchronization in large undirected networks of coupled phase oscillators to the case of directed networks. We also consider extensions to networks with mixed positive/negative coupling strengths. We compare our theory with numerical simulations and find good agreement

    Distributed estimation and learning over heterogeneous networks

    Get PDF
    We consider several estimation and learning problems that networked agents face when making decisions given their uncertainty about an unknown variable. Our methods are designed to efficiently deal with heterogeneity in both size and quality of the observed data, as well as heterogeneity over time (intermittence). The goal of the studied aggregation schemes is to efficiently combine the observed data that is spread over time and across several network nodes, accounting for all the network heterogeneities. Moreover, we require no form of coordination beyond the local neighborhood of every network agent or sensor node. The three problems that we consider are (i) maximum likelihood estimation of the unknown given initial data sets, (ii) learning the true model parameter from streams of data that the agents receive intermittently over time, and (iii) minimum variance estimation of a complete sufficient statistic from several data points that the networked agents collect over time. In each case, we rely on an aggregation scheme to combine the observations of all agents; moreover, when the agents receive streams of data over time, we modify the update rules to accommodate the most recent observations. In every case, we demonstrate the efficiency of our algorithms by proving convergence to the globally efficient estimators given the observations of all agents. We supplement these results by investigating the rate of convergence and providing finite-time performance guarantees

    Bayesian learning without recall

    Get PDF
    We analyze a model of learning and belief formation in networks in which agents follow Bayes rule yet they do not recall their history of past observations and cannot reason about how other agents' beliefs are formed. They do so by making rational inferences about their observations which include a sequence of independent and identically distributed private signals as well as the actions of their neighboring agents at each time. Successive applications of Bayes rule to the entire history of past observations lead to forebodingly complex inferences: due to lack of knowledge about the global network structure, and unavailability of private observations, as well as third party interactions preceding every decision. Such difficulties make Bayesian updating of beliefs an implausible mechanism for social learning. To address these complexities, we consider a Bayesian without Recall model of inference. On the one hand, this model provides a tractable framework for analyzing the behavior of rational agents in social networks. On the other hand, this model also provides a behavioral foundation for the variety of non-Bayesian update rules in the literature. We present the implications of various choices for the structure of the action space and utility functions for such agents and investigate the properties of learning, convergence, and consensus in special cases

    Learning without recall in directed circles and rooted trees

    Get PDF
    This work investigates the case of a network of agents that attempt to learn some unknown state of the world amongst the finitely many possibilities. At each time step, agents all receive random, independently distributed private signals whose distributions are dependent on the unknown state of the world. However, it may be the case that some or any of the agents cannot distinguish between two or more of the possible states based only on their private observations, as when several states result in the same distribution of the private signals. In our model, the agents form some initial belief (probability distribution) about the unknown state and then refine their beliefs in accordance with their private observations, as well as the beliefs of their neighbors. An agent learns the unknown state when her belief converges to a point mass that is concentrated at the true state. A rational agent would use the Bayes' rule to incorporate her neighbors' beliefs and own private signals over time. While such repeated applications of the Bayes' rule in networks can become computationally intractable; in this paper, we show that in the canonical cases of directed star, circle or path networks and their combinations, one can derive a class of memoryless update rules that replicate that of a single Bayesian agent but replace the self beliefs with the beliefs of the neighbors. This way, one can realize an exponentially fast rate of learning similar to the case of Bayesian (fully rational) agents. The proposed rules are a special case of the Learning without Recall approach that we develop in a companion paper, and it has the advantage that while preserving essential features of the Bayesian inference, they are made tractable. In particular, the agents can rely on the observational abilities of their neighbors and their neighbors' neighbors etc. to learn the unknown state; even though they themselves cannot distinguish the truth
    corecore